Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiscale Damage Detection in Conductive Composites

R. C. Thiagarajan
ATOA Scientific Technologies Private Limited, Bangalore, India

Conductive Composites such as carbon fiber reinforced composites are increasingly used in safety critical aerospace applications. The catastrophic macro structural failure of composite structures initiates from a micro level failure event such as fiber breaks. The ability to detect damage early on can improve the safety level and reliability of composite structures. A multilevel self-sensing ...

Finite Element Modeling of Freezing of Coffee Solution

C. Anandharamakrishnan, R. Gopirajah, and N. Chhanwal
Central Food Technological Research Institute
Mysore
Karnataka, India

Freeze-drying is a popular method of producing shelf stable particulate products and is of particular value for drying thermally sensitive materials (volatiles and biological based), which can be heat damaged by higher temperature methods, such as spray-drying. Porous structures are formed by the creation of ice crystals during the freezing stage, which subsequently sublime during the drying ...

A Wide Range MEMS Vacuum Gauge Based on Knudsen’s Forces

V. Sista, and E. Bhattarchaya
Microelectronics and MEMS Lab
Department of Electrical Engineering
Indian Institute of technology Madras
Chennai, India

A MEMS based Knudsen’s pressure gauge working in the range of 1e-5 mbar to 10 mbar is designed and simulated in COMSOL. The working principle is based on Knudsen’s forces that arise when two plates are held at different temperatures and their separation is comparable to the mean free path of the ambient gas molecules. The forces change the separation between the plates and capacitance between ...

Voltage and Capacitance analysis of EWOD system using COMSOL

D. Das[1], S. Sohail[1], S. Das[2], and K. Biswas[1]
[1]Electrical Engineering Department, IIT Kharagpur, India
[2]School of Medical Science and Technology, IIT Kharagpur, India

Electrowetting on Dielectrics (EWOD)systems is widely practiced digital microfluidic technique, used in Lab-on-a-Chip (LoC) system for biomedical application. In EWOD, with applied potential, the droplet minimizes its surface energy by transiting towards the actuated electrode. The problems with EWOD device for biological sample are that it will damage the cells if applied voltage across it ...

Modeling of Limestone Calcination Using Joule Heating

R. Kancharla, and M. Ramakrishna
Padmasri Dr. B.V.Raju Institute of Technology
Narsapur
Medak Dist, AP, India

The limestone calcination reaction is endothermic and will proceed only if the partial pressure of CO2 in the gas above the solid surface is less than the decomposition pressure of the CaCO3. As the reaction is endothermic, the conventional process for calcination uses coal firing in rotary kiln with limestone feed to get the desired temperatures. Microwave heating of limestone is proposed to ...

Design, Simulation and Study of MEMS Based Micro-Needles and Micro-Pump for Biomedical Applications

P. K. Podder, D. Mallick, D. P. Samajdar, and A. Bhattacharyya
Institute of Radio Physics and Electronics
University of Calcutta
Kolkata
West Bengal, India

In this paper, we have addressed the issues related to the design and simulation of MEMS based silicon micro-needles for insertion of fluid into the dermis layer and into the subcutaneous fat layer. In addition, a poly-silicon micro-pump based on the principle of electrostatic actuation has been designed and simulated which can be integrated with the proposed micro-needles to control the fluid ...

Design and Simulation of 3D ZnO Nanowire Based Gas Sensors for Conductivity Studies

N. Gouthami, D. Parthiban, M. Alagappan, and G. Anju
PSG College of Technology
Coimbatore
Tamil Nadu, India

The objective of this paper is to design a 3D Gas Sensor for sensing Hydrogen gas and to increase the conductivity at nano level. In this novel design, nanorods act as the sensing layer. The sensitivity towards gas adsorption is found to be increased due to its high surface to volume ratio. The total displacement and voltage on intermediate layer after gas adsorption will be changing by varying ...

Simulation of Fast Response Thermocouple for the Nuclear Reactor Core

K. Dusarlapudi[1], B. K. Nashine[2], D. Bai[3], and C. S. Babu[1]
[1]KL University, Vaddeswaram, Guntur, Andhra Pradesh, India
[2]E.D&S.S, IGCAR Kalpakkam, India
[3]VIT, Vellore, India

Thermocouples have been used for measurement of temperature ever since the discovery of Seebeck effect. Though the voltage output of a thermocouple is a function of the temperature difference between hot and cold junctions, the response time and the magnitude of voltage depends on the geometry and material of the thermocouple also. This report deals with the study of the ...

Evaluation of Tensile Modulus of Carbon Nanotube Bundle Based Composite with Interface Using Finite Element Method

M. S. Islam, F. O. Riktan, S. C. Chowdhury, M. M. R. Chowdhury, and S. Ahmed
Bangladesh University of Engineering & Technology (BUET)
Dhaka, Bangladesh

Carbon Nanotubes (CNTs) have remarkable mechanical, thermal and electrical properties. The properties of CNTs depend on atomic arrangement (how the sheets of graphite are rolled), the diameter and length of the tubes and morphology of nanostructure. In this paper effective elastic properties of CNT based polymer composites are evaluated using a square Representative Volume Element (RVE) in ...

3-D Design, Electro-Thermal Simulation and Geometrical Optimization of Spiral Platinum Micro-Heaters for Low Power Gas Sensing Applications Using COMSOL 4.1

V. Bansal, D. Kumar, B. Prasad, and A. Gujjar
Electronic Science Department

In this paper a thermal electric finite element method (FEM) analysis was used to investigate the thermal properties of individual electrically driven platinum micro-heaters. The geometric optimization for the micro-heater was performed by simulating a wide range of possible geometries using COMSOL 4.1. The simulated results of micro-heaters having an improved temperature distribution over the ...

Quick Search