Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using COMSOL Multiphysics for the Modelling of a Hybrid Linear Stepper Motor

R. Wislati, and H. Haase
Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, Hannover, Germany

In this paper a 2-phase hybrid linear stepper motor (HLSM), also known as Sawyer linear motor, has been considered as a potential approach in Variable Valve Actuation (VVA) Systems for Internal Combustion Engines.Initially, the reluctance network approach (RNA) with lumped parameters has been used assuming an infinite permeability of the steel core. The results have then been compared with a ...

Evaluation Of AC Loss And Temperature Distribution In High Temperature Superconducting Tape Using COMSOL Multiphysics

G. Konar, and N. Charaborty
Jadavpur University, Kolkata, West Bengal, India

High temperature superconductors (HTS) are promising candidates for electrical power applications. However, the superconductors exhibits energy loss known as AC loss when exposed to time varying external magnetic field and/or transport current. In this paper, AC loss in an elliptical Ag sheathed Bi2223 (HTS) tape is calculated using the time dependent PDE mode of COMSOL Multiphysics. The HTS tape ...

Numerical Modeling Of Thin Superconducting Tapes

F. Grilli[1], F. Sirois[2], and R. Brambilla[3]
[1]Karlsruhe Institute of Technology, Karlsruhe, Germany
[2]Ecole Polytechnique de Montréal, Montréal, Canada
[3]ERSE SpA, Milan, Italy

Second-generation high-temperature superconducting (HTS) tapes are very promising superconductors for ac applications and numerical models are very important for predicting their performance, e.g. for computing the ac losses. These tapes are characterized by a very large aspect ratio: the width of the superconducting film is typically between 4 and 12 mm, whereas its thickness is in the ...

Methodology for Calculation Scattering Parameters in a Transmission-Line Transducer

E.J.P. Santos[1], L.B.M. Silva[1]
[1]Laboratory for Devices and Nanostructures, Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, Várzea, Recife, PE, Brasil

Transmission-line transducers are used for the measurement of absorption and reflection of different materials, such as: liquids, granular medium, and ground. A simplified methodology for calculation of scattering parameters of such transducers is presented. The transducer cell is partitioned at each interface and the partial scattering equations are calculated, considering two interfaces at a ...

Quasielectrostatic Induction on Stationary Vehicles under High Voltage Power Lines

J. Leman[1]
[1]POWER Engineers, Hailey, ID, USA

The National Electrical Safety Code (NESC) requires that high voltage power lines in the U.S. be designed to limit electrostatic effects on nearby equipment. An example is that of a large vehicle underneath a transmission line. The tires insulate the vehicle’s body from ground. If a person standing on the ground makes contact with the vehicle surface, 60 Hz current can pass through the ...

Finite-element Validation of Electric Field Distribution inside a Cylindrical Conductor for an Ideal Two-Probe Impedance Measurement

V.S. Kumar, G. Kelekanjeri, and R.A. Gerhardt
Georgia Institute of Technology

A COMSOL Multiphysics model is used to validate recently derived closed-form analytical expressions for the electric field inside a cylindrical conductor for the case of a two-probe impedance measurement. A two-probe impedance measurement consists of applying an AC signal across a specimen placed in between the source and sink electrodes. Analytical solutions for the axial and the radial ...

Numerical Simulation versus Experiments and Analytical Computation for Design Optimization

Mario Jungwirth
Professor
Upper Austria University of Applied Sciences
Wels, Austria

This presentation deals with how COMSOL Multiphysics can be used in education. The presentation is performed by demonstrating various multiphysics examples, their setup, modeling approach, and solution. ------------------------------------------- Keynote speaker's biography: Dr. Mario Jungwirth has been a professor at the Upper Austria University of Applied Sciences since 2003. In 2001, he ...

Dynamic Study of Field and Current Distribution in Multifilamentary YBCO Thin Films

F. Grilli[1], A. Lucarelli[2], G. Lüpke[2], T. Haugan[3], and P. Barnes[3]

[1]Ecole Polytechnique de Montréal, Montréal, QC, Canada
[2]College of William and Mary, Williamsburg, VA, USA
[3]Air Force Research Laboratory

We have developed a model for computing current and field distributions in multifilamentary superconducting thin films subjected to the simultaneous effects of transport ac current and applied dc field perpendicular to the sample. The model is implemented in COMSOL’s PDE module (general form) and solves Maxwell equations using a highly non-linear resistivity to describe the superconductor ...

Gauss's Law; Teaching Platform Using the Magic Cube: Implementation by COMSOL Multiphysics

H. Ghali, and A. Hossam
Electrical Engineering Department, British University in Egypt, Cairo, Egypt

Most probably Gauss\'s law is considered as the first \"electromagnetic\" concept for early undergraduate physics and electromagnetic courses. In early study year, teaching Gauss’s law is usually performed based on two main components; 1) The use of simple symmetrical charge distributions where a correct expectation of the spatial behavior of the electric flux density is possible and 2) The use ...

Modeling Of A Single Pulse Electric Discharge At Sphere/Flat Interface By Coupling Contact Multiphysics And Phase Transformations

G. Maizza, P. Di Napoli, and R. Cagliero
Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

Contact electro-thermal phenomena are of great theoretical and technological interest to a large number of processing applications, such as spot welding, current-assisted sintering, electrical circuitry (switches) and motors. A model has been developed, aiming at predicting physical and metallurgical phenomena in a steel sample upon rapid heating induced by current pulse discharge. Electric pulse ...

Quick Search