Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

3D Model for the Dynamic Simulation of SOFC Cathodes

A. Häffelin, J. Joos, M. Ender, A. Weber, and E. Ivers-Tiffée
Institut für Werkstoffe der Elektrotechnik (IWE)
Karlsruher Institut für Technologie (KIT)
Karlsruhe, Germany

A fuel cell is an electrochemical system, which converts chemical energy into electricity by a controlled reaction of hydrogen and oxygen. The performance of the electrode is likewise determined by its material and the microstructure. The simulations were performed directly on reconstructions of real electrodes, obtained from focused ion beam (FIB) tomography. A finite element method (FEM) ...

Design of Electrochemical Machining Processes by Multiphysics Simulation

M. Hackert-Oschätzchen, S. F. Jahn, and A. Schubert
Chemnitz University of Technology
Chemnitz, Germany

The principle of electrochemical machining (ECM) is the anodic dissolution of a metallic workpiece at the interface to a liquid ionic conductor under the influence of electric charge transport. This erosion principle works independently from the mechanical hardness of the workpiece and is free of mechanical forces. The design of electrochemical machining processes is still performed ...

Using Computational Multiphysics to Optimise Channel Design for a Novel PEM Fuel Cell Stack

F. A. Daniels[1], D. J. L. Brett[1], A. R. Kucernak[2], and C. Attingre[2]
[1]University College London, London, UK
[2]Imperial College London, London, UK

Polymer electrolyte membrane (PEM) fuel cells have significant potential as a source of clean, efficient energy production. This study presents a three-dimensional, non-isothermal, fully-coupled model of a PEM fuel cell with printed circuit board current collectors. The effect of the current collector design on transport phenomena and consequent cell performance is investigated. The model ...

Modeling the Effect of Discrete Distributions of Platinum Particles in the PEM Fuel Cell Catalyst Layer

C.F. Cetinbas[1], A.K. Prasad[2], S.G. Advani[1]
[1]Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]University of Delaware, Newark, DE, USA

In this study, the basic catalyst layer (CL) structure, consisting of carbon-supported Pt particles (C|Pt) and an ionomer binder, is investigated numerically by using COMSOL. The significance of modeling discrete Pt particles on the carbon support is highlighted by comparing the cell performance results to the case in which the Pt is assumed to be distributed uniformly over the carbon support as ...

Modeling of High Temperature PEM Fuel Cells using FEMLAB

Cheddie D., Munroe, N.
Mechanical & Materials Engineering, Florida International University, Miami, FL

All of the work conducted in proton exchange membrane fuel cell (PEMFC) modeling to date has been limited to low temperature applications. The present work is based on the development of a complete 2-D mathematical model of a high temperature PEMFC, which accounts for multi-component fluid flow with electrochemical reactions, heat transfers, and potential variations. The computational domain ...

Optimization of the H2O2 - NaBH4 Regenerative Fuel Cell for Space Power Applications using FEMLAB Modeling

Miley, G.H., Luo, N., Mather, J., Byrd, E., Hawkins, G., Gu, L., Nayak, A., Burton, R., Shrestha, P.J.
Departments of NPRE, Aerospace Engineering, Mechanical Engineering, and Electrical and Computer Engineering, University of Illinois, Urbana, IL

FEMLAB is being employed to study and optimize a unique new type of fuel cell (FC) that uses H2O2 in a low temperature PEM type FC directly at the cathode. Experiments with a series of small 5-W units are being analyzed using FEMLAB 3.1 with the Chemical Engineering and Electromagnetics modules. Once benchmarked, the FEMLAB model will be used in design studies for the scaled up 500W and kW cells ...

Modelling of the Hydrogen Diffusion in Martensitic Steel in Contact with H2SO4 Media

J. Bouhattate[1], X. Feaugas[1], and S. Frappart[1][2]
[1]Laboratoire d’Etudes des Matériaux en Milieux Agressifs,
Université de La Rochelle, La Rochelle, France
[2]V&M France, CEV, Aulnoye-Aymeries, France

Hydrogen Embrittlement (HE) is one of the mechanisms responsible for premature failure of structures. In the context of environmental sustainability, it is compelling to improve or conceive new processes and/or new materials capable of reducing fracture induced by HE. We analyzed the influence of the oxide layer on the permeability of hydrogen. This investigation was carried on as a correlative ...

Numerical Modeling of the Electrochemical Behaviour of Metallic Alloys based upon Experimental Measurements at the Macro- and Microscale

H. Krawiec1, V. Vignal2, and R. Akid3
1AGH University of Science and Technology, Krakow, Poland
2ICB, UMR 5209 CNRS, Université de Bourgogne, Dijon, France
3Sheffield Hallam University, Sheffield, UK

Micro capillary-based techniques allow the interrogation of single metallurgical sites and are therefore becoming increasingly popular for the investigation of the electrochemical behavior of metallic phases and non-metallic heterogeneities in alloys. This study was carried out to assess the differences between current measurements made using a 'closed' micro-capillary system (the electrochemical ...

Simulation of the Shape of Micro Geometries Generated with Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1,2]
[1]Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute of Machine Tools and Forming Technology, Chemnitz, Germany

Electrochemical Machining with a closed electrolytic free jet is a special procedure to generate complex micro structures by help of anodic dissolution. The work piece shape is fabricated by supplying an electrolytic current through an electrolyte jet ejected from a small nozzle. In this study COMSOL Multiphysics is used to simulate the electric current density in the jet and the dissolution ...

Symmetric Stack Model of a Molten Carbonate Fuel Cell (MCFC) with Indirect Reforming

M. Pfafferodt[1], P. Heidebrecht[2], and K. Sundmacher[1,2]
[1]Otto-von-Guericke-University, Magdeburg, Germany
[2]Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

A model of a Molten Carbonate Fuel Cell (MCFC) stack with internal reforming is presented.  It describes the concentrations in the gas phase, the temperatures and the current densities in this highly integrated system. The differential equations, boundary conditions and the coupling equations used in the model are presented. A strategy to solve the system of partial differential ...

Quick Search