Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Predicting the Mechanical Properties of Biological Inspired Diatoms

M.F.D. Moreno, L.P. Davila, and F. Viscarra
University of California at Merced, Merced, CA, USA

Our computational work has focused on calculating the mechanical properties of diatom silica structures using COMSOL Multiphysics. We have used selected diatom geometries based on their structure classification and different loading conditions. Various 3D structures were modeled on Pro/ENGINEER, and then exported to COMSOL for further analysis. The mechanical behavior of diatom structures was ...

Reducing Mitigating Factors That Lead to Clotting of the Arteries From Prolonged Hemodialysis

K. Hegde[1], J. Clark[1], A.G. Akingba[2], and J.V. Clark[1]
[1]Purdue University, West Lafayette, IN, USA,
[2]Indiana University, Indianapolis, IN, USA

In this paper we present a computational study of our novel arteriovenous (AV)-shunt interface device that is expected to reduce the mitigating factors that lead to clotting of the AV-shunts from prolonged hemodialysis. Kidney failure affects about 300,000 (about 0.1%) of the United States population. About 20% of the hemodialysis hospitalizations in the U.S. are due to clotting-related vascular ...

Patient-specific Modelling of Blood-flow in Cerebral Aneurysms

D. Zajarias-Fainsod[1], M.J. Chappell[1], J.F. Collingwood[1], A. Rennie[2], S. Nagaraja[2], and A. Wilson[2]
[1]University of Warwick, Coventry, UK,
[2]University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK

A first stage in this research was to determine the feasibility of patient-specific modelling and the use of in-silico techniques to study flow for the first time in the same vessels with and without an aneurysm. Three-dimensional renderings of the cerebral blood vessels were reconstructed from computed tomography angiograms of the head using MATLAB (The MathWorks) for image processing and ...

Quick Search

271 - 273 of 273 First | < Previous | Next > | Last