Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Simulation of the Oscillatory Flow in a Channel with the Heat Transfer through a Hot Bump

Lee, Y.
Dep. of Engineering Sciences, Embry-Riddle Aeronautical University

The present numerical simulation investigates the time-dependent flow driven by the oscillatory pressure gradient in the streamwise direction. An attempt was made to obtain the flow field that is initially stationary and evolves to the purely oscillatory flow with zero mean velocity, and the results after several cycles of oscillation are compared with the long-time analytical solution in the ...

Reactor Design Improvements for a Propane Autothermal Reformer by Simulation of Momentum Flow

F. Cipitì, L. Pino, A. Vita, M. Laganà, and V. Recupero
CNR-ITAE, Messina

The paper presents a two-dimensional model to describe the gas flow in a propane autothermal reactor, developed at the CNR-ITAE Institute, and aimed to design a Beta 5 kWe hydrogen generator, named HYGen II, to be used with Polymer Electrolyte Fuel Cells (PEFCs) for residential applications. The main aim of the mathematical model was to optimize the reactor geometrical key parameters (diameter ...

Transport in reactive porous media containing biofilms

G. Debenest, Y. Aspa, and M. Quintard
IMFT, GEMP group, Toulouse, France

The objective of this presentation is the evaluation of effective bulk transport properties of reactive porous biofilm. We present our microscale model that accounts for both momentum and mass balances.

Magneto-Hydrodynamic Numerical Study of DC Electromagnetic Pump for Liquid Metal

A. Daoud, and N. Kandev
Institut de recherche d'Hydro-Quebec (LTE), Shawinigan, Quebec, Canada

The electromagnetic pumping (EMP) of electrically-conducting fluid is of growing interest for many industrial applications requiring precise flow control, enabling stopping or reversing flow direction without any moving parts or mechanical devices. Presented in this work are the results of a 3D numerical magneto-hydrodynamic (MHD) simulation of direct current (DC) EMP for liquid ...

Investigating the Influence of Dynamic Jet Shapes on the Jet Electrochemical Machining Process

M. Hackert[1], G. Meichsner[2], S.F. Jahn[1], and A. Schubert[1]
[1]Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology Chemnitz, Germany

Electrochemical Machining is a potential procedure for micro manufacturing technology. Especially the absence of machining forces makes it advantageous for processing metals with high hardness and for the generation of complicated geometries. Applying a closed electrolytic free jet (Jet Electrochemical Machining - Jet-ECM) the electric current is restricted to a limited area. That allows working ...

Fluid Flow Simulations Using New CFD Module

H. Rouch
INOPRO, France

COMSOL\'s new CFD Module has been tested for laminar and turbulent flows in simple geometries, with couple or segregated solver. These tests allow mesh sensitivities and comparison with analytical solutions. They also give a first idea of cpu time and RAM use for standard cases. In a second part a thermal-fluid simulation of a real industrial application is done: the air flows cooling a large and ...

Numerical Aspects of the Implementation of Artificial Boundary Conditions for Laminar Fluid-Structure Interactions

C. Boeckle[1], P. Wittwer[1]
[1]University of Geneva, Geneva, Switzerland

We discuss the implementation of artificial boundary conditions for stationary Navier-Stokes flows past bodies in the half-plane, for a range of low Reynolds numbers. When truncating the half-plane to a finite domain for numerical purposes, artificial boundaries appear. We present an explicit Dirichlet condition for the velocity at these boundaries in terms of an asymptotic expansion for the ...

Thermal Adversity in Solid-State Lighting

T. Dreeben[1]

COMSOL Multiphysics is used to simulate natural convection and its impact on peak operating temperatures of solid-sate lighting in thermally adverse conditions. PDE modes in the general form are used in conjunction with a thin-surface conduction formulation in the weak form. COMSOL is used to predict both temperatures and heat flows through numerous components of the configuration. Model ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL Multiphysics®

J. Knox[1], R. Coker[1], R. Cummings[1], C. Gomez[1], G. Schunk[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

Some NASA efforts are focused on improving current systems that utilize fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. For the bulk separation of CO2 and H2O, temperature changes due to the heat of adsorption are significant, requiring modeling and ...

Modeling of a Multilayered Propellant Extrusion in Concentric Cylinders

S. Durand[1,3], C. Dubois[1], P. Lafleur[1], V. Panchal[2], D. Park[2], D. Lepage[3], P. Paradis[3]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]US Army ARDEC, Picatinny Arsenal, NJ, USA
[3]General Dynamics OTS Canada Valleyfield, Valleyfield, QC, Canada

A novel propellant technology requires extruding two formulations with differential burning rates together as a multilayered propellant. This propellant is processed into a concentric cylinder configuration, in the form of slow-fast-slow with single perforation. The material uses different path lengths between the inner and outer sections of the die, both coming from the same pressure driven ...

Quick Search