Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Earthquake and Volcano Clustering at Mono Basin (California)

D. La Marra[1], A. Manconi[2], and M. Battaglia[1]
[1]Dept of Earth Sciences, University of Rome “La Sapienza”, Roma, Italy
[2]IRPI-CNR, Strada delle Cacce, Torino, Italy

This study investigates the feedback between fault slip and dike intrusions during the Mono-Inyo eruption sequence of ~1350 A.D. (Mono Basin, California). We perform an extensive validation of 3D finite element models, implemented in the Structural Mechanics module of COMSOL Multiphysics, against standard analytical solutions of fault dislocation in a homogeneous elastic flat halfspace. The ...

Coupled Gas Flow and Thermal and Reactive Transport in Porous Media for Simulating Waste Stabilization Phenomena in Semi-Aerobic Landfill

H. Ishimori, K. Endo, T. Ishigaki, H. Sakanakura, and M. Yamada
National Institute for Environmental Studies
Tsukuba, Ibaraki

Semi-aerobic landfill has interesting structure that passively provides the atmospheric oxygen into landfilled waste due to the heat convection generated by the decomposition of landfilled waste. There are limited studies on the mechanisms of the oxygen transport. This paper presents the governing equations and parameter estimation methods for the numerical simulation of the gas fluid flow and ...

Application of Numerical Simulation in Geotechnical Engineering

Dr. Meen-Wah Gui[1]
[1]Department of Civil Engineering, National Taipei University of Technology, Taipei, Taiwan

In this work, COMSOL Multiphysics was used to develop a model to investigate the degree of saturation in sloped terrain. The model was validated via laboratory experiments incorporating Lan’s man-made rainfall slope model test. The validated model was used in an actual case study to simulate the Maokong Landslide.

Chesapeake Bay Analysis using Time and Spatial Generalized Eigenfunctions

K. McIlhany1 and R. Malek-Madani2
1Physics Department, United States Naval Academy, Annapolis, MD, USA
2Mathematics Department, United States Naval Academy, Annapolis, MD, USA

A Normal Mode Analysis of the Chesapeake Bay has reached the phase of performing a time-series analysis. Prior attempts using generalized eigenfunctions obtained from COMSOL have led to extraction of power spectra using a partial domain extraction and a waveletlike correction to the result.A new approach has been developed which effectively solves the spatial equivalent of the Initial Value ...

COMSOL Multiphysics, TOUGHREACT and Numerrin Comparison in Some Modelling Tasks of Spent Nuclear Fuel Disposal

A. Itälä[1], V-M. Pulkkanen[1], M. Laitinen[2], M. Tanhua-Tyrkkö[1], and M. Olin[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland
[2]Numerola Oy, Jyväskylä, Finland

Bentonite clay is used as a protecting barrier around both the copper capsules in deposition holes and in deposition tunnels in the KBS-3 final disposal concept for spent nuclear fuel. The performance of these bentonite barriers will be investigated both experimentally and by modelling. Both approaches are needed, because for example the time span in question (hundred thousand years or even more) ...

Assessment of Spatial Variably Saturated Flow by Irrigation Moisture Sensors in 2-Dimensions using the COMSOL Multiphysics 4.1

A. Boluwade, and C. A. Madramootoo
Bioresources Engineering, McGill University
Ste. Anne De Bellevue, QC

This paper reports on the application of COMSOL Multiphysics’ Richard\'s Equation Interface in the assessment of irrigation moisture sensors for detecting the level of water saturation in a spatial variably saturated soil. The Richard\'s Equation (in COMSOL) provides the interface which automates the van Genuchten equation. A hypothetical soil column 4m by 4m was set up with seven irrigation ...

FEMLAB Modeling of Multiple Crack Systems

Grechka, V.1, Kachanov, M.2
1 Shell E & P, Houston, TX
2 Department of Mechanical Engineering, Tufts University, Medford, MA

Almost ubiquitous presence of fractures in the earth and their tendency to provide natural pathways for flow of hydrocarbons makes them an important target in exploration for oil and gas. While typical geophysical (mainly seismic) data indicate only relatively large faults, information about many small fractures of exploration interest has to be inferred from seismics by applying some effective ...

A Mass-consistent Atmospheric Model using FEMLAB Optimization

Wang, X., Pepper, D.W.
University of Nevada, Las Vegas, Department of Mechanical Engineering, Las Vegas, NV

The assurance of mass consistency in constructing 3-D atmospheric velocity fields is important when developing accurate numerical simulations. The implementation of a mass consistent wind field is typically undertaken using available meteorological data obtained from instrumented towers and remote sensors. In this study, two methods are presented and compared for constructing 3-D mass ...

Elastoplastic Models of the Interaction between Active Fronts of the Southern Alps and Dinarides (NE Italy and NW Slovenia)

M. Coccia[1], E. Carminati[1], F. Rolandone[2], M. Battaglia[1], D. Zuliani[3], and P. Fabris[3]
[1]Università La Sapienza, Roma, Italy
[2]Université Pierre et Marie Curie, Paris, France
[3]Centro Ricerche Sismologiche, Udine, Italy

We use GPS measurements and Finite Element analysis to investigate strain accumulation in the interaction between active fronts of the Southern Alps and Dinarides at the northern edge of the Adriatic micro-plate. We develop a three dimensional model of the area taking into account the regional topography, approximating the crust as an elasto-plastic medium and reproducing as close as possible the ...

Computational Science and Engineering at DuPont

R. Nopper
Dupont Engineering
Research & Technology
Wilmington, DE

Rick has a BS in Physics, a ScM in Geological Sciences, and a PhD in Physics. He worked at Air Force Geophysics Laboratory, Conoco Petroleum Exploration Research, and, since 1989, has been at the DuPont Experimental Station. In this industrial setting, Rick has had opportunity to work on a great diversity of problems ranging from traditional engineering studies, using commercial finite-element ...

Quick Search