Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical approach of film thickness and friction in EHL by F.E.M.

Demirci, I., Vergne, P.
Laboratoire de Mécanique des Contacts et des Solides LaMCoS, UMR CNRS-INSA de Lyon, Villeurbanne cedex

Hydrodynamic lubrication applies when two moving solids are separated by a lubricant film in which significant pressure occurs. Elastohydrodynamic lubrication (EHL) prevails if the pressure is high enough to elastically deform the solid surfaces. The hydrodynamic pressure is given by the Reynolds equation. This equation is derived from the Navier-Stockes relationships with the following ...

Using COMSOL Multiphysics in Advanced Engineering

Advanced Computational & Engineering Services
Columbus, Ohio

In this presentation we give a thorough introduction to advanced engineering using COMSOL Multiphysics. We introduce you to many disciplines of engineering and physics as well as multidisciplinary, multiscaled multiphysics.

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion

D. Dalle Nogare[1] and P. Canu[1]

[1]Department of Chemical Engineering Principles and Practice, University of Padova, Padova, Italy

This work investigates the effects of boundary conditions on the species profiles in heterogeneous catalysis, with low Péclet systems. Hydrogen combustion in Helium was chosen because of the high diffusivities. Furthermore, already at T=300°C over a Pt catalyst, kinetics is very fast and the composition gradients at the inlet extremely steep. The issue is analyzed with 1D models, ...

Biosimulation of Normal Pressure Hydrocephalus Using COMSOL Multiphysics®

K. Shahim[1], J-M. Drezet[1], J-F. Molinari[2], S. Momjian[3], and R. Sinkus[4]

[1]LSMX, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
[2]LSMS, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
[3]University Hospitals of Geneva and University of Geneva, Switzerland
[4]Waves and Acoustics Laboratory, ESPCI, Paris, France

A numerical finite element model of one human brain is built in COMSOL in order to study a particular form of hydrocephalus, the so called Normal Pressure Hydrocephalus (NPH). The geometry of the ventricles and the skull is obtained by Magnetic Resonance Imaging (MRI) and imported in COMSOL Multiphysics. Form the mechanical point of view, the brain parenchyma is modeled as a porous medium fully ...

Using Spacers in MD Channels

A.M. Alklaibi
Technical college, Jeddah, Saudi Arabia

A membrane distillation process equipped with mesh-type material spacers has been modeled as a two-dimensional conjugate problem in which a simultaneous numerical solution of the momentum and energy of the feed and cold solutions have been carried out. The results shows that the center suspended spacer produces the highest average shear stress, and gives the highest spacer efficiency at all ...

Influence of Geometry on Mixing in a Passive Micromixer

E. Giuri, A. Ricci, and C. Ricciardi
Laboratorio di Technologie Elettrobiochimiche Miniaturizzate per l'Anilisi e la Ricerca, Politechnico di Torino

Finite Element Method simulations of microstructure behaviour is carried out by COMSOL. This enables us to make also technological considerations related to the easy way of fabrication and to lower production costs as explained in the following slide.

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

Calculation of the Magnetic Field Intensity in a Rectangular Conductor Carrying Current in Electromagnetism Introductory Courses

J.C. Olivares-Galvan[1], I. Hernandez[2] , P.S. Georgilakis[3], and L.E. Campero[1]

[1]Universidad Autónoma Metropolitana, Azcapotzalco, Mexico, D.F.
[2]Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Guadalajara, Guadalajara, Jalisco, Mexico
[3]School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

This paper describes a type of didactic material used when teaching electromagnetism. The purpose is to guide the students to verify the results of a Finite Element (FE) simulation using those obtained analytically. This procedure has shown to be of great help during their learning of the FE method. The example in this paper uses a 2D analytical method to estimate the magnetic field generated by ...

Fluid Dynamics of Blood Flow during Reperfusion and Post-conditioning

T. Merrill[1], A. La Barck[1], and J. Docimo[2]
[1]Rowan University, Glassboro, New Jersey, USA
[2]FocalCool, LLC, Mullica Hill, New Jersey, USA

Reperfusion injury is caused by the rapid restoration of blood flow to oxygen-starved tissue. Animal studies show that intermittent periods of occlusion (also called post-conditioning) during reperfusion can limit tissue damage to vital organs such as the heart and brain. These studies suggest that the protective effects of post-conditioning relate to the dynamics of blood flow. COMSOL is being ...

Untersuchung der Polarisationseigenschaften einer mikrostrukturierten optischen Faser unter dem Einfluss äußerer Belastung

A. Unger[1], and K.H. Witte[2]
[1] FH-Wiesbaden, Fachbereich Physikalische Technik, Rüsselsheim;
[2] FH-Wiesbaden, Fachbereich Elektrotechnik, Rüsselsheim

Mit Hilfe des Softwareprogramms COMSOL zur Modellierung physikalischer Vorgänge wurden die Polarisationseigenschaften einer mikrostrukturierten Singlemodefaser untersucht. Ausgangspunkt der Simulationen waren experimentelle Untersuchungen, nach denen diese Faser eine ungewöhnlich starke Doppelbrechung aufwies. Die Doppelbrechung der Faser und damit ihre Fähigkeit zur Polarisationserhaltung ...

Quick Search

2661 - 2670 of 3626 First | < Previous | Next > | Last