Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Microstimulation in The Brain: Does Microdialysis Inuence the Activated Volume of Tissue?

D. Krapohl[1][3], S. Loeffler[2], A. Moser[2], and U.G.Hofmann[1]

[1]Institute for Signalprocessing, University of Luebeck, Lübeck, Germany
[2]Institute for Neurology, University of Luebeck, Lübeck, Germany
[3]Department of Information Technology and Media, Mid Sweden University, Sundsvall, Sweden

Deep Brain Stimulation (DBS) has been established as an effective treatment for Parkinson's disease and other movement disorders. The stimulation is currently administered using tetrode-macroelectrodes that target the Subthalamic Nucleus (STN). This often leads to side effects which bias the surrounding areas, e.g. the speech centre. Targeting a specific brain region can better be achieved with ...

A Study of FEMLAB for Modeling High Frequency Ultrasound Scattering by Spherical Objects

Falou, O.1, Kumaradas, J.C.2, Kolios, M.C.3 1 Dept. of Electrical and Computer Engineering, Ryerson University, ON, Canada
2 Dept. of Electrical and Computer Engineering & Dept. of Physics, Ryerson University, ON, Canada
3 Dept. of Physics, Ryerson University, ON, Canada

Analytical solutions to the problem of wave scattering from three dimensional structures such as spheres have been studied extensively in the past. However, these solutions are not flexible enough to be extended to wave scattering from complex geometries. We have developed a finite element model of acoustic wave propagation through spherical structures to solve the problem of highfrequency (20 ...

Numerical Simulation of Heart Valve Motion and Fluid Structure Interaction

Tijerino Monge, T., Carmona Infante, V.
Costa Rica

This model studies a portion of the vascular system of a normal person, in particular the left ventricle and the mitral valve of the heart. The flowing blood applies pressure to the ventricle before, after and specially during the contraction process of the heart, thereby deforming the structure.

Optimisation of the Electrochemical Instrumentation of a Wear Simulator through Finite Element Modelling

Déforge, D.1, 2, Ponthiaux, P.2, Wenger, F.2, Lina, A.1, Ambard, A.1
1 Electricité de France (EDF) R&D, Chemistry and corrosion group, Les Renardières, Moret sur Loing cedex, France
2 Laboratory LGPM, Ecole Centrale Paris, Chatenay-Malabry cedex, France

Stainless steels are often used in nuclear power plants due to their good corrosion resistance. This good behaviour is due to an oxide film which forms on their surface and insulates them from the corrosive media. Sometimes, flow-induced vibrations can however lead to some contacts between the components, and thus to the degradation of this oxide film. The mechanical removal leads to an increase ...

Application of FEMLAB on supercritical hydrogen components of the high flux isotope reactor cold source

Freels, J.D.
Oak Ridge National Laboratory, Oak Ridge, TN

FEMLAB has played a key role in the design and safety analysis of several key components of the new High Flux Isotope Reactor (HFIR) hydrogen (H2) cold neutron source (CS) at Oak Ridge National Laboratory (ORNL). The main components of interest for the detailed analysis capability of FEMLAB are those where the H2 temperature spans a large range causing the fluid properties to change dramatically ...

Aharonov-Bohm interferometry with quantum dots as phase shifters : simulations

Alberty, J.M.
EIHES, Ecole d’Ingénieurs de Genève

Electron interferometry using the Aharonov-Bohm (AB) effect finds many applications in industrial areas such as future nanocomputer technologies, physical random number generators, electron phase microscopy and holography, to name just a few. The presence of a confined magnetic field surrounded by the interferometer arms, as originally proposed by Aharonov and Bohm is however a source of ...

Flow behaviour of phosphorus-deoxidised copper in plane-strain hot extrusion

Jin, L.Z.1, Ssemakula, H.2, Sandström, R.1
1 Department of Materials Science and Engineering, Royal Institute of Technology, Sweden
2 Department of Production Engineering, Royal Institute of Technology, Sweden

Flow behaviour of phosphorus-deoxidised copper in plane-strain hot extrusion with an insertion in the die has been studied through a finite-element model consisting of fluid dynamics and heat transfer approaches. The billet material is considered as rigid-visco-plastic and rate-sensitive. A dynamic viscosity, which is strain-rate and temperature dependent, has been integrated into the model. ...

Inductive FEA - Benchmark Optimization

J. Feigenblum[1], D. Perrier[1], Y. Mocellin[1], and E. Roland[2]
[1]ROCTOOL, Savoie Technolac, Le Bourget du Lac, France
[2]Laboratoire SIMAP, Bâtiment EPM, St Martin d’Hères, France

In this paper, after a brief presentation of our company, we will detail our technology and the importance of the simulation step. In the same time, we will describe different levels of FEA (Finite Element Analysis) we have followed and we will conclude on the best balance, for our industrial target, between complexity of models and accuracy of results.

The Use of COMSOL in Teaching Heat and Moisture Transport Modeling in Building Constructions

A.W.M. van Schijndel[1] and H.L. Schellen[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper presents the use of the multiphysics package COMSOL for teaching heat and moisture transport modeling in the research area of building physics. It includes a description on how COMSOL works and six exercises with 2D, 3D, steady state and transient models. It is concluded that COMSOL is a very useful tool for this kind of engineering education. Especially, the abstraction level of ...

Computer Modelling of Deformable non-Newtonian Flow using COMSOL Multiphysics

H.A. Lecuyer[1], F.H. Bertrand[1], P.A. Tanguy[1], J.P. Mmbaga[2], and R.E. Hayes[2]
[1] Ecole Polytechnique , Montreal
[2] University of Alberta, Edmonton

This presentation is concerned with the modelling of deformable non-Newtonian Flow using COMSOL Multiphysics. This general modelling approach has more concrete applications such as paper coating in a metering size press, meniscus location by PIDS to mention a few.

Quick Search

2671 - 2680 of 3228 First | < Previous | Next > | Last