Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermal Adversity in Solid-State Lighting

T. Dreeben[1]
[1]OSRAM SYLVANIA, Beverly, MA, USA

COMSOL Multiphysics is used to simulate natural convection and its impact on peak operating temperatures of solid-sate lighting in thermally adverse conditions. PDE modes in the general form are used in conjunction with a thin-surface conduction formulation in the weak form. COMSOL is used to predict both temperatures and heat flows through numerous components of the configuration. Model ...

Exergy Analysis of a Water Heat Storage Tank

F. Dammel[1], J. Winterling[1], K. J. Langeheinecke[2], P. Stephan[3]
[1]Institute of Technical Thermodynamics, Technische Universität Darmstadt, Germany
[2]IAV, Gifhorn, Germany
[3]Institute of Technical Thermodynamics/Center of Smart Interfaces, Technische Universität, Darmstadt, Germany

A combined heat and power (CHP) plant generates both electricity and useful heat. A heat storage tank enables a decoupling of electricity and heat delivery. In this study a cylindrical hot water storage tank is considered. Charging, holding time and discharging are numerically simulated applying COMSOL Multiphysics 4.2. The performance of the heat storage is evaluated by an exergy analysis. ...

Accelerating R&D with COMSOL: A Personal Account

Erik Birgersson[1]

[1]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore

This presentation gives an account of how COMSOL Multiphysics® software has helped to accelerate research and development. It has been used to simulate energy systems such as fuel cells, biomedical systems such as hydrogels and human skin, and monolithic catalytic converters. Each of these systems requires a mathematical model that can accurately represent the relevant physics, and which can be ...

Early Breast Cancer Detection using Patient Symptomatic Breast Images by Finite Element Analysis Aided by COMSOL

Tan Ming Sien[1]
Devendran Perumal[1]
Sri Pooveyninthran[1]
Samavedham Lakshminarayanan[2]
Balu Ranganathan[3]

[1]Department of Chemical and Natural Resources Engineering, University of Malaysia Pahang, Pahang, Malaysia
[2]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
[3]Center for Excellence for Fluid Flow Research, University of Malaysia Pahang, Pahang, Malaysia

In this project, we attempted to determine the drug concentration in a breast cancer tumor after a drug has been delivered. We created a COMSOL Multiphysics® finite element model. We investigated the relationship between drug delivery efficiency and parameters such as diffusivity, deepness of the tumor, and the temporal and spatial placement of the transdermal patch that delivers the drug. We ...

Effect of Interfacial Charge on the Drop Deformation under the Application of Oscillatory Electric Field.

R. Patil[1], and V. A. Juvekar[1]
[1] Department of Chemical Engineering, Indian Institute of Technology Bombay, Maharashtra

Study of interaction of drops and bubbles with electric field is important for understanding the physics involved in various physical phenomenas and industrial processes. Important applications arise in colloidal systems (Miller and Scriven, 1970), meteorology and cloud physics (Sartor, 1969), electrostatic spraying of liquids (Balachandran and Bailey, 1981), power engineering applications ...

FEMLAB as a Front-end for Large-scale Acoustic Modeling Parallelized Wave Basis Solver for the 3D Helmholtz Problems

Huttunen, T.1, Malinen, M.1, Vanne, A.1, Monk, P.2 1 University of Kuopio, Department of Applied Physics, Kuopio, Finland
2 University of Delaware, Department of Mathematical Sciences, Newark, DE, USA

We introduce an extension for FEMLAB's acoustic mode which uses the ultra-weak variational formulation (UWVF) method for solving 3D Helmholtz problems. The solver, calledWaveller, uses FEMLAB's graphical interface for creating geometries, generating meshes, post-processing and visualization. However, the solution of acoustic wave problems using the UWVF significantly reduces the computational ...

A Multiscale Numerical Model of a Deformable Isothermal Nonwetting Liquid Drop

Smith, M.K., Neitzel, G.P.
The George W. Woodruff School of Mechanical Engineering, Georgia Institue of Technology, Atlanta, GA

A state of permanent, isothermal nonwetting of a solid surface by a normally wetting liquid may be achieved by having the surface move tangentially to a liquid drop that is pressed against it. Surrounding gas is swept into the space between the liquid and solid creating a lubricating film that prevents wetting. The length scales of the drop and the film are typically three or more orders of ...

Flow Accelerated Corrosion Modelling of Carbon Steel using FEMLAB : A Preliminary Study

Amimer, A.1, 2, Mandin, P.3, Lincot, D.3, Horner, O.1
1 EDF R&D, Département MMC, Moret-sur-Loing, France
2 Ecole Nationale Supérieure de Chimie de Paris, Paris, France
3 Ecole Nationale Supérieure de Chimie de Paris, UMR 7575, Paris, France

Flow Accelerated Corrosion (FAC) of carbon steel has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (pH, dioxygen content), temperature, hydrodynamic or mass transfer conditions (flow velocity, geometry) and steel composition on the corrosion kinetics has been demonstrated both theoretically (“Berge ...

Electromagnetic simulations of Goubau transmission lines with FEMLAB

Akalin, T.
IEMN, Institut d’Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, USTL Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

The BioMEMS (Bio-Electro-Mechanical Systems) have become of considerable interest because they constitute a converging solution for many pluridisciplinary studies. The different covered fields are the biology (single cell, proteins, enzymes, neurons…), the chemistry (polymers), microelectronics and the microtechnologies associated with. Devices whose aim is the study of biological entities are ...

Modeling transport in silicon nanocrystal structure

Leroy, Y., Leriche, B., Cordan, A.S.
InESS — ENSPS, UMR 7163, ILLKIRCH, France

We present in this paper a model to study new memory devices with embedded nanocrystals, emerging in microelectronics. The theoretical calculations and their implementation in FEMLAB are detailed, leading to a quite simple and realistic model. One key point for these memories is the electronic tunnel transfer to store the charge into a nanocrystal. This is why we carry out a brief analysis of ...

Quick Search

2731 - 2740 of 3230 First | < Previous | Next > | Last